
A Native Approach to Modeling Timed Behavior in the Pi-Calculus

Kamal Barakat, Stephan Kowalewski
Embedded Software Laboratory

RWTH Aachen University
Aachen, Germany

{barakat,kowalewski}@embedded.rwth-aachen.de

Thomas Noll
Software Modeling and Verification Group

RWTH Aachen University
Aachen, Germany

noll@cs.rwth-aachen.de

Abstract—We introduce a new concept of modeling timed
behavior in pi-calculus by representing timed actions (or
timers) as interactions between application processes and clock
processes. This approach extends the original calculus in a
manner such that bisimulation arrangements in pi-calculus
remain untouched. We also present a tool to simulate spec-
ifications written in our timed version of pi-calculus in order
to verify their behavior.

Keywords-Specification and Verification; Embedded and
Real-Time Systems

I. INTRODUCTION

The process-algebraic approach has proved to be a pow-
erful and versatile tool to modeling concurrent systems [1].
Process calculi support the high-level description of in-
teraction, communication, and synchronization operations
between a collection of independent processes. They also
provide algebraic laws that allow process specifications to
be manipulated and analyzed, and permit formal reasoning
about equivalences between processes. Famous examples of
basic process calculi include CSP, CCS, and ACP. The basis
of our work is the extension to mobile systems as it is
formalized by the π-calculus [2], [3], [4]. This formalism can
model communicating processes with message exchange,
and specifies mobility through dynamic channel setup and
through privatizing names using restriction.

In contrast to its ability to model dynamic aspects caused
by mobility, the expression of quantitative timing properties
is less developed or too specific for particular applications
(timed spi-calculus [5]). For this reason, our aim is to
include timing into the π-calculus in a manner which peruses
the suitability for mobile systems as far as possible. Such
a coherent calculus can serve as an alternative to timed-
automaton based approaches such as [6] which provide
no inherent features for dynamic channel setup. In non-
mobile settings in contrast, this was already accomplished
for ACP [7] and CCS [8].

In this paper we model timed behavior as interactions
between application and clock processes. We refrain from
modeling time steps (cp. [9], [10], [11], [12]), and use the
native inter-process communication concept to model timers.
This concept is flexible in the sense that the association of
clock processes either with the overall application process or

with some of its concurrent subprocesses allows to represent
both, global and private clocks.

II. THE CLASSIC π-CALCULUS

π-Calculus is an algebraic model that treats mobility in a
native way. One can use this model for representing commu-
nication protocols, algorithms, programming languages and
data structures. Here we only give a sketch; for details we
refer to [2], [3], [4]. We start with introducing its syntax.
It is parametrized by a set of agent identifiers, A, and a
set of names, N . The latter serves as both communication
channels and data to be transmitted along them. The set of
process expressions is given by the following context-free
grammar

P ::=
∑
αi∈N

αi.Pi | P1 ‖ P2 | new x P | A〈~y〉

Summation of prefixed expressions represents choice, where
action prefixes α are determined by

α ::= x(y) | x〈y〉 | τ where x, y ∈ N

The parallel product operator P1 ‖ P2 composes P1 and P2

concurrently. The restriction operator new restricts x to the
scope of P . An agent call A ∈ A where x, y ∈ N requires
that the agent identifier has been defined by an equation
of the form A(~x) := PA. An equivalence relation, called
structural congruence, allows to identify processes which
differ only in syntactic details. Its definition can be found
in [2].

Input actions are also called positive, while output actions
are negative. Each pair of positive and negative actions
makes a redex if they carry the same first name. A redex
allows these action prefix pairs to synchronize their execution
(or to react), thereby replacing the second name of the
receiver by that of the sender. In this sense, the first name
represents a communication channel. This results in a silent
τ -action. This is formalized by the following reaction rule

(React)
P

x(y)−−−→ P ′ Q
x〈z〉−−−→ Q′

P ‖ Q τ−→ P ′[y 7→ z] ‖ Q′

Again, the complete transition-system semantics of π-
calculus can be found in [2].

III. ADDING REAL-TIME FEATURES

The central idea of our extension of the π-calculus to a
timed setting is the explicit introduction of clock processes.
The appropriate definition of their scope allows us to model
both global and private clocks. In the first case, there will be
just one (global) clock process, and all application processes
have to synchronize their timed operations with it. In the
second case, a (private) clock will be associated with every
application process that needs to execute internal timed
actions not related to actions in other processes. In order
to be able to introduce (timed) behavioral equivalences, we
will assume that all timed actions are visible to the environ-
ment. We refer to our extended version of the calculus by
πτ -calculus. In the following, T := R≥0 denotes the domain
of time values.

A. Timed Actions and Clock Processes

Each clock process supports the following timed actions:
• c(x, y) where x, y ∈ N , providing synchronization at

time point x+ y (with base x and offset y), and
• c〈t〉 where t ∈ T, providing the current time t.
The clock process definition iterates them in a loop:

C(c) := (if ṫ = x+ y) c(x, y).C〈c〉+ c〈ṫ〉.C〈c〉 (1)

where ṫ denotes the current absolute time. Thus an applica-
tion process can use the following complementary actions:
• c〈v, w〉 with v, w ∈ N ∪T, asking the clock process to

synchronize at time point v + w (where v and w have
to be instantiated by T values), and

• c(x) with x ∈ N , inquiring the current time and storing
it in x.

Using these features, a process P that uses a private clock
can be represented by the process expression new c (P ‖
C〈c〉). To formalize the interaction between both processes,
we add two transition rules that essentially correspond to
Rule (React) from the classic calculus. The difference,
however, is that the resulting silent τ actions carry additional
information. They come in two shapes:
• active: τ t,u where t, u ∈ T, indicating a synchroniza-

tion operation at time point t+ u, and
• passive: τx where x ∈ N , indicating a query of the

current time which is stored in x.
The corresponding rules are of the following form (t, u ∈ T,
x ∈ N).

(Sync)
C〈c〉 c(t,u)−−−→ C〈c〉 P c〈t,u〉−−−→ P ′

C〈c〉 ‖ P τt,u

−−→ C〈c〉 ‖ P ′

(Query)
C〈c〉 c〈ṫ〉−−→ C〈c〉 P c(x)−−→ P ′

C〈c〉 ‖ P τx−→ C〈c〉 ‖ P ′[x 7→ ṫ]

We assume that neither the synchronization nor the query
operation themselves consume time. Moreover, we assume

that these two transition rules are handled with higher prior-
ity than those of the untimed π-calculus. Technically this can
be achieved by explicitly representing clock synchronization
and query steps by another relation, say ⇒, and by adding
negative premises of the form “P 6⇒” to each of the rules
of the classic calculus (for appropriate choices of P). This
ensures that timed actions are preferred over non-timed ones.

Similar to the approach in [7], each clock in our calculus
increases its value internally and accordingly reacts to timed
requests of other processes. It is possible to show that
the time operators introduced in that paper, such as delay,
absolute time-out and initialization, can also be defined
in πτ -calculus. By abstracting the passage of time as an
internal activity of the clock process, we save the users of
our calculus from the formalities that arise from explicitly
defining it (e.g. .t in [9]).

B. Example
In the following we demonstrate our formalism using a

larger example. Here we abbreviate a sequence of c〈t, u〉
followed by c(x) as a bidirectional timed action ct,ux .

Example 1 (Sensor network) The sensor node S gener-
ates data every three seconds and sends it to the receiver
R over channel d, while the receiver immediately replies
over the same channel with an acknowledgment or sends
a reset message over secure channel r - no message loss
- if the sensor fails to provide data in four Seconds. Upon
reception of a reset message, the sensor resets its timer and
starts over. The malicious process M starts after 15Sec to
attack the channel d causing message loss. We model the
sensor process as an automaton of type TYPES : ← begin

TYPES

SEN1 = r.ct.SEN1 + ct,3Sect .SEN2

SEN2 = r.ct.SEN1 + d〈data〉.SEN3
SEN3 = r.ct.SEN1 + d(x).SEN1

and define the process S from this type: ← end

S := TYPES

We define the receiver process R as the following:

R := cs,4Secs .r.R+ d(y).cs.R
′

R′ := cs,4Secs .r.R+ d〈ack〉.R

The malicious process M represents an external failure
source that randomly absorbs messages on d:

M := cu.M
′

M ′ := (if u ≥ 15Sec) d(z).τ.M + τ.M

We will address constraints in our timed system in section
IV. The system process consists of all above processes
running in parallel in addition to the clock process C(c)
as described in (1):

SYS := S ‖ R ‖M ‖ C〈c〉 �

- t
0 1 2 3 4 5 6

- t
0 1 2 3 4 5 6

- t
0 1 2 3 4 5 6

(4)

(3)

(2)

�� �� �� �� �� �� ���� d d
�� �� �� �� �� �� ���� �� �� �� d

�������������������������������� d

Figure 1. Evaluating the Ω function (Example 2)

IV. EXTENSION BY TIME CONSTRAINTS

A. Time Constraints

We extend the classic conditional prefixing of process
expressions as suggested by Parrow [3]. The standard match
and mismatch constructs only refer to the (in-)equality of
names. In our extension names can also be instantiated by
time values. Therefore, we must extend these constraints to
do simple arithmetic comparisons on these values.

Definition 1 (Time constraints) Let x, y ∈ N , t ∈ T, and
let ./ ∈ {<,>,≤,≥,=, 6=}. Let δ ::= x − y | x − t | x.
A (time) constraint is a list of (in-)equations of the form
C = C1C2 . . . Cn where Ci = (if δ ./ 0). A constraint
with all names instantiated by values in T holds if all of its
(in-)equations are satisfied.

If a timed action is constrained, its execution proceeds if
the constraint holds. Each timed action prefix defines one
or more points in time where it can fire. Constraints restrict
this set to a subset of possible execution opportunities. In
the following we address this point formally.

B. Semantics of Constraints

A mechanism is needed to dynamically quantify available
execution points in time of timed action prefixes. We there-
fore introduce the Ω function. For a given constraint C and
a subsequent timed action η, Ω yields the set of time points
(that is, a subset of T) at which Cη executes. See [13] for
it’s formal definition; here we consider an example.

Example 2 In this example, A(s, t) is a sequential compo-
sition of A1(s) and A2(t). Figure 1 shows the evaluation
using the Ω function on each of those timed processes.

A1(t) := (if t > 2) c〈0, t〉 (2)
A2(s) := (if s < 5) cs,0.5s . (3)
A(s, t) := (if t > 2) c〈0, t〉.(if s < 5) cs,0.5s (4)

Evaluating Ω on A1(t) (for arbitrary t) produces]2,∞[,
while evaluating Ω on A2(s) yields [0.5, 5.5[. The composi-
tion of both processes evaluates to]2.5, 5.5[. �

Combining restricted action prefixes reduces the total
number of execution times of them as a sequence. In extreme
cases, a sequence of constrained timed actions can block.

Definition 2 (Non-blocking sequence) Let
C1c

p1,q1
x1

. . . Ckc
pk,qk
xk

be a sequence of timed actions

and their constraints. This sequence is called non-blocking
if, for all 1 ≤ i ≤ k, Ω(Ci, c

pi,qi
xi

) is non-empty and, for all
1 ≤ i < k, pi + qi ≤ pi+1 + pi+1.

This property means in effect that a concatenation of
timed actions and their constraints allows the consecutive
execution of all its actions; no action prefix finishes after the
start schedule of the next one and no constraint completely
blocks the execution of its timed action prefix. We suggest an
algorithm for reducing sequences of timed action prefixes.
This is necessary because it is easier to compare two
different sequences by comparing their reductions.

Lemma 1 (Reduction of non-blocking sequences) Any
non-blocking sequence C1η1 . . . Ckηk can be reduced to
some Cη.

Proof sketch: Assume the sequence C1η1.C2η2. The
basic idea is to shift the constraints of the second action
prefix, C2, one position to the left after performing necessary
alpha-conversion. This produces a structurally congruent
sequence C1C

′
2η1.η2. We merge next η1 and η2 into one

action prefix using structural congruence rules and alpha-
conversion. This is possible because of the assumption that
the overall sequence is non-blocking.

If the number of timed actions in the original sequence is
greater than two, we apply the algorithm recursively starting
by the two leftmost elements, and proceed by replacing them
with the result of the reduction. A formal description of the
algorithm is given in [13].

Example 3 Assume a sequence of four elements:

P := cs.(if s > 10) cs,2s .cs.(if s < 14) cs,4

We go through the reduction step by step:
1) Create a new sequence P ′ by inserting a passive timer

with some new name, say t̃, in front of P so that:

P ′ := ct̃cs.(if s > 10) cs,2s .cs.(if s < 14) cs,4

t̃ becomes a reference to the start of execution, while
P ′ still retains the timed behavior of P because passive
timers cause no delay, hence P ≡ P ′. This step
simplifies comparing reductions of different sequences
and has to be done once in the first iteration.

2) Passive consecutive timers execute instantly when un-
guarded and consume no execution time. We merge
them together in one action prefix:

P ′ ≡ ct̃,s(if s > 10) cs,2s .cs.(if s < 14) cs,4

3) Shift the constraint (if s > 10) one position to the left
by alpha-converting s in it to its equivalent t̃:

P ′ ≡ (if t̃ > 10)ct̃,s.c
s,2
s .cs.(if s < 14) cs,4

4) Transfer information from ct̃,s to cs,2s by alpha-
converting all shared names between the set of bound

names of ct̃,s and the set of the free names in cs,2s , and
then merge cs with the result:

P ′ ≡ (if t̃ > 10)ct̃,2s .(if s < 14) cs,4

5) Similar to steps 3 & 4, the s in (if s < 14) and in the
superscript of cs,4 is alpha-converted to t̃+ 2:

P ′ ≡ (if t̃ > 10)(if t̃+ 2 < 14)ct̃+2,4 �

C. Structural Congruence of Timed Actions

Our timer system makes the consequent arrangements to
structural congruence simple.

Definition 3 (Timed structural congruence) Let both
C1η1 . . . Ckηk and C ′1η

′
1 . . . C

′
lη
′
l be sequences of

constrained timed actions.
1) If both sequences are blocking, then C1η1 . . . Ckηk ≡

C ′1η
′
1 . . . C

′
lη
′
l ≡ 0.

2) Otherwise, let Ccp,qx and C ′cp
′,q′

x′ be the corresponding
reductions according to Lemma 1. If p + q = p′ + q′

and Ω(C, cp,qx) = Ω(C ′, cp
′,q′

x′), then C1η1 . . . Ckηk ≡
C ′1η

′
1 . . . C

′
lη
′
l.

Rule 1 defines deadlocking and stresses the continuity
and universality of time in πτ -calculus. If the current time
exceeds the threshold of a timed action, this action becomes
permanently inaccessible and can be garbage collected by
utilizing the congruence with the empty process. The in-
cluding context will deadlock if no other execution paths
are available. Rule 2 says that if reductions of sequences
coincide and none of them is blocking then they are struc-
turally congruent, e.g., c0,2s .c〈s, 1〉 and c〈0, 3〉.

D. Strong and Weak Bisimulation

Since timers in πτ -calculus are mere I/O actions, our
extension does not impose changes to native bisimulation
in π-calculus. If the application process synchronizes its
timer(s) with a global clock, the external observer detects
these timer reactions and strong bisimulation can be deduced
about different implementations of application processes. If
the application process, however, synchronizes some or all
of its timers with a private clock, the external observer per-
ceives a silent (timed) τ -action as the result of the interaction
between those time agents, hence weak bisimulation applies.
See [13] for examples on timed bisimulation.

V. TOOL IMPLEMENTATION

Our tool implementation aims to provide a πτ -calculus
simulating mechanism to evaluate timed telecommunication
protocols at an abstract level. Our simulation tool1 assumes
that specifications are written in LATEX. The parts of the
LATEX document that contain πτ -calculus relevant syntax are
redefined math environments and commands to which our

1Available at http://web.embedded.rwth-aachen.de/pical/.

compiler is sensitive. Process definitions are translated into
metadata which the interpreter understands. In the metadata
names are replaced with unique number IDs, which simpli-
fies many aspects of the execution like alpha-conversion and
parameter passing and facilitates exporting the specification
to platforms such as UPPAAL. The interpreter’s output is a
log file that registers all inter-process communications with
their time-stamps.

Acknowledgement: This work was funded by the DFG
Cluster of Excellence on Ultra-high Speed Information
and Communication (UMIC), German Research Foundation
grant DFG EXC 89.

REFERENCES

[1] J. Bergstra, A. Ponse, and S. Smolka, Handbook of Process
Algebra. Elsevier Science Ltd, 2001.

[2] R. Milner, Communicating and mobile systems: the π-
calculus. Cambridge Univ. Press, 1999.

[3] J. Parrow, “An introduction to the π-calculus,” in Handbook of
Process Algebra, J. A. Bergstra, A. Ponse, and S. A. Smolka,
Eds. Elsevier Science Ltd, 2001, ch. 8, pp. 479–543.

[4] D. Sangiorgi and D. Walker, The π-calculus: a Theory of
Mobile Processes. Cambridge University Press, 2001.

[5] C. Haack and A. Jeffrey, “Timed spi-calculus with types for
secrecy and authenticity,” in CONCUR 2005 – Concurrency
Theory, ser. Lecture Notes in Computer Science, vol. 3653,
2005, pp. 202–216.

[6] N. Lynch, R. Segala, and F. Vaandrager, “Hybrid I/O au-
tomata,” Information and Computation, no. 1, pp. 105 – 157.

[7] J. Baeten and C. Middelburg, “Process algebra with timing:
real time and discrete time,” in Handbook of Process Algebra,
J. A. Bergstra, A. Ponse, and S. A. Smolka, Eds. Elsevier
Science Ltd, 2001, ch. 10, pp. 627–684.

[8] M. Hennessy and T. Regan, “A process algebra for timed
systems,” Information and Computation, no. 2, pp. 221 – 239.

[9] M. Berger and N. Yoshida, “Timed, distributed, probabilistic,
typed processes,” Programming Languages and Systems, pp.
158–174, 2009.

[10] W. Jin, H. Wang, and M. Zhu, “Modeling MARTE se-
quence diagram with timing pi-calculus,” in 14th IEEE Int.
Symp. on Object/Component/Service-Oriented Real-Time Dis-
tributed Computing (ISORC 2011). IEEE, 2011, pp. 61–66.

[11] Q. Wang, C. Du, C. Ma, and G. Li, “Extension of TD-pi cal-
culus in real-time distributed virtual-test system description,”
in Int. Conf. on Computer Science and Software Engineering,
vol. 3. IEEE, Dec. 2008, pp. 363–369.

[12] J. Lee and J. Zic, “On modeling real-time mobile processes,”
in Proc. of 25th Australasian Conference on Computer Sci-
ence (ACSC 2002), ser. CRPIT, vol. 4, Citeseer. ACS, pp.
139–147.

[13] K. Barakat, “Introducing timers to π-calculus,” RWTH
Aachen, Tech. Rep. AIB-2011-18, Aug.

